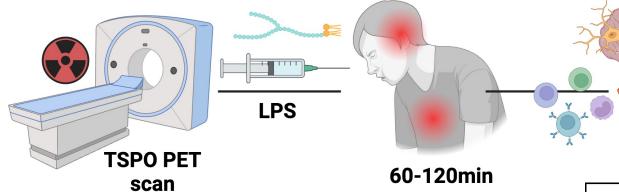
Microglia-mediated neuroimmune suppression in PTSD is associated with anhedonia Robin Bonomi, MD PhD, Ansel T. Hillmer, Eric Woodcock, Shivani Bhatt, Gustavo A. Angarita, Richard E Carson, Yiyun Huang, Maggie Davis, Irina Esterlis, John H. Krystal, Robert Pietrzak, Kelly P. Cosgrove Yale University School of Medicine, New Haven, CT



BACKGROUND

- PTSD is associated with immune dysfunction, as noted by individuals with PTSD experiencing higher rates of systemic illness^{1,2}
- Lipopolysaccharide (LPS) is a potent immune activator, we previously demonstrated robust increases in 18-kDa translocator protein (TSPO) a marker of microglia³ following LPS administration
- Individuals with PTSD have lower levels of microglia at baseline, visualized by TSPO receptor PET imaging⁴
- **Aim:** To investigate the microglial response following an acute immune challenge, lipopolysaccharide (LPS), in humans using [¹¹C]PBR28 PET imaging.
- **Hypothesis:** Individuals with PTSD will have lower TSPO response as compared to those without PTSD.

MATERIALS & METHODS

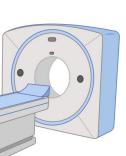

• [¹¹C]PBR28 positron emission tomography (PET) scans to measure 18-kDa translocator protein (TSPO) availability, a marker of microglia levels quantified by volume of distribution (V_{T}) estimated regionally, for key regions in the prefrontal-limbic circuit as identified in previous studies⁴

Figure 1. Schematic timeline of the scan protocol and challenge
 Table 1. Demographics table for
control and PTSD groups (N=15 each)

Mixed model linear regression and multifactor ANOVA were used to determine significance of data

				-
	HC (N=15)	PTSD (N=15)	Test of difference	P value
	Mean (SD)	Mean (SD)		i value
	or	or	-	
	N (%)	N (%)		
Age	30.1 (8.3)	32.2 (10.4)	0.92	0.18
Sex (%male)	11 (73.3%)	9 (60.0%)	0.6	0.44
Race/ethnicity (white,	7 (46.7%), 3	7 (46.7%), 5		
black)	(20.0%)	(33.4%)	2.79	0.43
Substance use		7 (46.7%), 6		
(nictotine, alcohol,	7 (46.7%), 6	(40%), 5		
marijuana)	(40%) 3 (20.0%)	(33.4%)	0.32	0.61
Age of index trauma		20.4 (7.0)		
Years since index				
trauma		10.9 (7.3)		
CAPS-5 total * N=12	0.6 (1.5)	32 (11)	10.95	<.001
PCL-5 (on scan day)*	0.4 (0.9)	43.7 (13.3)	12.56	<.001
HAM-D total	0.5 (1.2)	13.5 (9.2)	5.69	<.001
HAM-A total	0.5 (1.1)	10.1 (8.1)	4.34	<.001
rs6971 binding status				
(HAB)	8 (53.3%)	14 (93.3%)	6.14	0.013
Injection dose (MBq)	524.15	546.4	0.715	0.245
LPS Dose (ng/kg)	1.0 (0.01)	1.0 (0.02)	0.49	0.31

TSPO PET scan

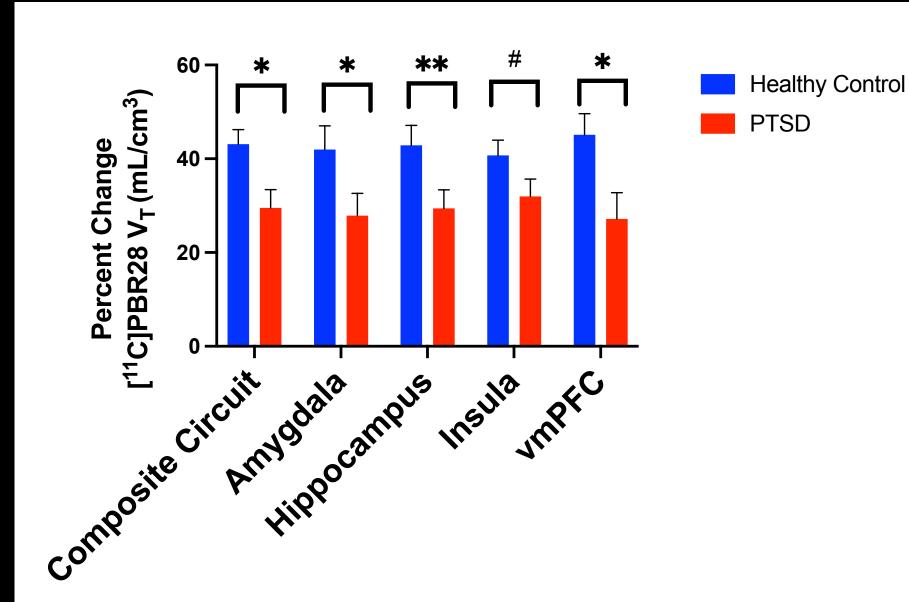
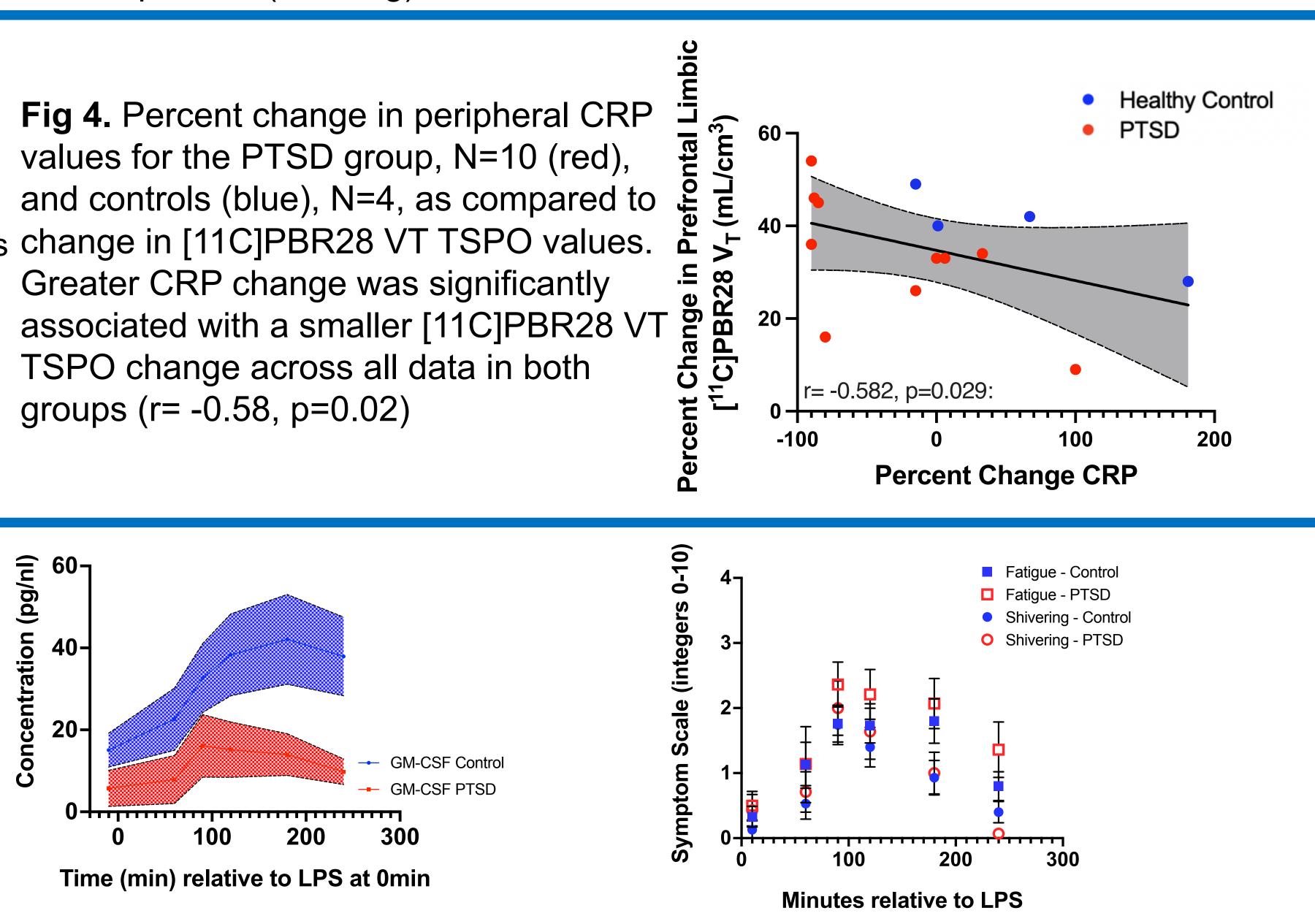



Fig 2. Individuals with PTSD had less robust microglia response to LPS than controls in the prefrontal limbic circuit. * indicates p <0.05, ** indicates p <0.01, # denotes p < 0.06 (trending).

groups (r= -0.58, p=0.02)

Robin.Bonomi@yale.edu

RESULTS

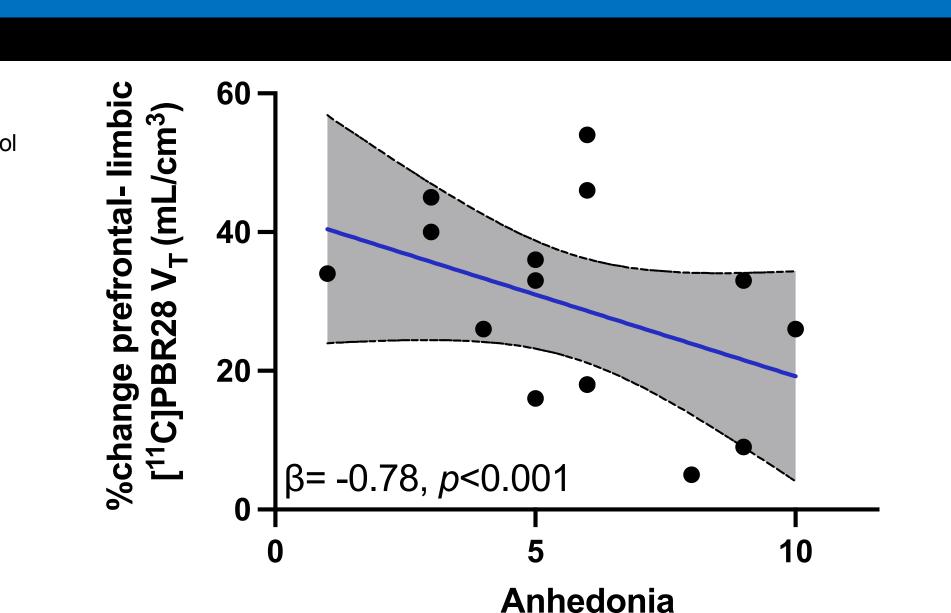
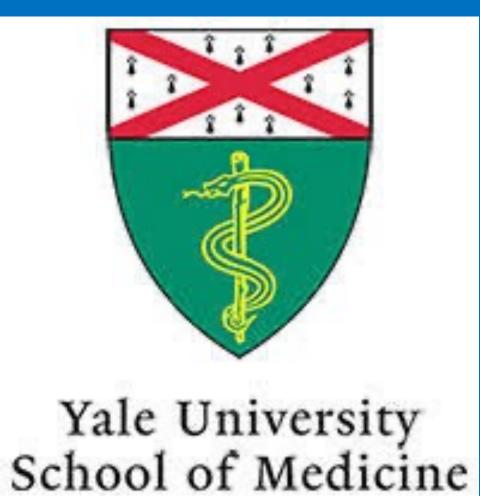



Fig 3. Individuals with more severe anhedonia, taken from CAPS scoring, symptoms of PTSD had less robust increase in TSPO following LPS.

Fig 4. Although individuals with PTSD had lower overall microglia density and reduced microglia function, they largely did not have differences in peripheral cytokines, with the exception of GM-CSF (p = 0.007). There were no group differences between sickness symptoms.

CONCLUSION

- Consistent with our prior work⁴, TSPO availability was significantly lower in individuals with PTSD compared to HC in pre-frontal limbic circuit at baseline
- PTSD individuals demonstrated less robust TSPO response after LPS indicating reduced microglial function as compared to controls
- **GM-CSF** reduction indicated suppressed ability to mobilize immune system in PTSD
- No group difference in peripheral sickness symptoms
- These findings indicate a need to better understand the microglial changes in PTSD, and point to similar peripheral physiology despite central immune difference

REFERENCES

- Speer, K., et al., J. of inflammation research, 2018. 11: p. 111-121.
- 2. Michopoulos, V., et al Neuropsychopharmacology, 2017. 42(1): p. 254-
- Sandiego, C.M., et al., PNAS, 2015. 112(40): p. 12468-12473.
- Bhatt, S., et al., Nat Commun, 2020. 11(1): p. 2360.

ACKNOWLEDGEMENT

Research support provided by R01 MH110674 and the VA National Center for PTSD. RB supported by Detre Translational Neuroscience Award. We thank the Yale PET Center for imaging, chemistry, and nursing support.